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Overview

Toll plazas are becoming an essential part of the highway systems,

especially within the state of Florida. A primary reason for many

vehicle collisions happening at these facilities, is the fact that each toll

plaza agency has different designs and even signs. This, in turn,

causes driver confusion and possible last minute weaving. Even

though the varying design of toll plazas is a clear highway safety

factor, research in the field is very limited but expanding. This study

focuses on one toll plaza in particular, the Dean Mainline Toll Plaza,

located in Orlando, Florida. Using the NADS MiniSim Simulator,

seventy-two subjects are needed to complete this study. Five factors

will be tested throughout twenty-four scenarios by means of factorial

experimental design.

Experimental Design

As previously mentioned, a factorial experimental design was used for

this research and five factors were analyzed. These factors and their

levels are shown in the figure below. With these factors, there were a

total of one hundred and eighty-eight scenarios. However, with one

restriction, the scenarios could be reduced to one hundred and forty-

four scenarios. From these, twenty-four scenarios were randomly

chosen due to the experiment being limited to seventy-two

participants.

Factor Descriptions

Five of the eight possible paths are used for this design. The figure

below shows the five paths that will be taken.

The traffic conditions will vary between peak and off-peak hour. Real

world traffic data were analyzed and entered into the driving simulator

to formulate realistic scenarios (to be explained in detail in the next

section). The pavement markings that are being considered in this

study are shown in the next figure. Some participants will be given

scenarios with the markings that show where the lane splits and other

participants will be given scenarios without these markings.

The length factor will vary between the base length, a longer distance

between the toll plaza and the downstream off ramp, and a longer

distance between the toll plaza and the upstream on ramp. The base

length will be the existing condition at the toll plaza, while a distance of

500 feet will be added for each distance change. There are three

different scenarios for the signage factor (please refer to the figure

displaying the driver paths):

1. The first scenario is the existing base condition that is shown.

2. Another scenario, is simply removing the sign closest to the toll

plaza labeled #3.

3. The third scenario, involved:

• Adding a DMS sign, similar to figure above

• Removing sign #3

• Moving sign #2 farther upstream before the on ramp

Traffic Data Preparation

In order to create realistic traffic volumes for the toll plaza driving

simulator study, real traffic data from the Dean Mainline Toll Plaza

was analyzed. Data was collected from six separate detectors

located at the following mileposts on SR-408 Westbound: 18.8, 19.0,

19.4, 19.7, 19.9, 20.7. The locations of the detectors are shown in the

figure below. To be more specific, the detectors located at miles 18.8,

19.7, and 19.9 are located in the gore areas. These are the merging

and diverging areas for the ramp and mainline.

The peak data and off-peak data were collected and analyzed in a

similar manner. The data was collected between the hours of 7 and 8

AM on October 1, 8, 15, 22, and 29 of 2014. It was found that there

was no significant difference in speeds due to the date, time, and

location of the data taken. However, the speed of each lane to be

slightly different. The results of the speed data of the peak hour are

shown below and the off-peak hour speed data is shown below the

peak hour results. Lane 1 is the inner most lane and lane 3 is the

outer most lane. The volumes are also shown below the speed data

results, with peak hour on the left and off-peak hour on the right.

Lane Mean Speed (mph) Standard Deviation (mph) 

1 67.4 2.96 

2 59.03 4.42 

3 58.02 4.03 

On-Ramp 45.45 2.86 

 Lane Mean Speed (mph) Standard Deviation (mph) 

1 69.7 2.4 

2 63.5 2.3 

3 60.9 4.0 

On-Ramp 45.0 5.5 

 Peak Off-Peak

Lane 1 1,162 vph 769 vph

Lane 2 1,543 vph 807 vph

Lane 3 247 vph 120 vph

Total (All Lanes) 2,952 vph 1691 vph

Expressway vs. Cashway 71:29 85:15:00

On-Ramp 559 vph 204 vph

Off-Ramp Before Toll Plaza 52 vph 24 vph

Off-Ramp After Toll Plaza 77 vph 78 vph

Truck on Cashway 6% 15%

Truck on Expressway 6% 14%

Factor Description Factor Levels

1. Mainline-Express-Mainline

2. Mainline-Cash-Mainline

3. Mainline-Express-Ramp

4. Ramp-Express-Mainline 

5. Ramp-Cash-Mainline

1. Peak hours/Heavy

2. Non-peak hours/Mild

1. Yes

2. No 

1. Default (current)

2. Adding length before toll plaza

3. Adding length after toll plaza

1. Default (current)

2. Remove 3rd sign

3. Remove 3rd sign, move 2nd sign 

and add sign on ramp

X5 Signage The allocation of signs

X3 Pavement Marking
Whether there will be 

pavement marking or not

X4 Length Segment Length

X1 Path Setting of the path

X2 Traffic Setting of traffic conditions
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Overview

The Big Traffic Data which are collected from various ITS traffic

detection systems provide insights about the facilities at microscopic

level in real-time. Consequently, efficient integration and utilization of

such data for better performance of transportation system become a

critical issue for traffic operators. In this project, different applications

of the real-time microscopic traffic data were explored with a focus on

operation efficiency and traffic safety:

 Evaluation traffic operation

 Real-time traffic safety evaluation

 Traffic data in Micro-simulation

 Dilemma zone analysis

Data Collection

 Automatic Vehicle Identification (AVI) Traffic Data

AVI was Installed at toll plazas for Electronic Toll Collection (ETC)

and at other locations for travel time estimation.

 Microwave Vehicle Detection System (MVDS) Traffic Data

MVDS is point-based roadway detection system. It was used to

collect traffic flow parameters on each lane at one minute interval.

Evaluation Traffic Operation

 Congestion measurement

TTI indicates the additional time spent on a trip compared to an ideal

trip on the same corridor.

TTI =
Actual travel time

Free flow travel time

 Travel Time reliability

It measures consistency or dependability in travel times by:

• Buffer index

95th Travel Time − Average Travel Time

Average Travel Time
× 100%

• Planning time index

• Percent variation

• Misery index

Real-time Traffic Safety Evaluation
The evaluation was conducted for crashes on expressway mainlines

and ramps respectively. Traffic data which were 10 to 5 minutes prior

to crash and non-crash events were extracted to estimate crash risk.

Traffic Data in Micro-simulation
MVDS traffic data were utilized to calibrate and validate VISSIM

network under poor visibility conditions. Then Surrogate Safety

Assessment Model (SSAM) was used to measure the safety.

The results are as follows:

 Conflict number increased along with the traffic volume

 Less conflicts in the fog area when the speed limit was lower

 Speed limit had more impact on conflict number under low volume

condition

Dilemma Zone Analysis

Driver behavior during the yellow interval at signalized intersections

was evaluated. Based on field data, a logistic regression model,

which was a function of speed, distance to the stop line and the

lead/follow position of the vehicle, was developed to predict driver

stop/go decisions during simulation. The Cellular Automata (CA)

model was employed to simulate the traffic flow. The four scenarios

are listed as follows:

 Typical scenario

• Mean speed and speed standard deviation played a significant

role in rear-end crash risk situations

 Flashing green scenario

• Had little influence on rear-end risk reduction, and could not

reduce the percentage of false go decisions

 Pavement marking scenario

• Effectively reduced the RLR risky in some situations

• Effectively decreased rear-end crash risk and improve safety in

most situations

 New countermeasure scenario (adding a flashing green signal

next to the pavement marking)

• Lowest rear-end crash

• Rare RLR violation

Parameter Estimate Std. Error Wald Chi-Square P-value

Intercept -3.1420 0.1318 567.9733 <.0001

Peak 0.1659 0.0888 3.4933 0.0616

U1_lanevol 0.0130 0.000891 212.6196 <.0001

U1_spddiff 0.0228 0.00598 14.5063 0.0001

D1_trkpct 1.2891 0.2388 29.1463 <.0001

D1_ci 4.6351 0.3374 188.7165 <.0001

Lane45 0.3196 0.0906 12.4456 0.0004

Median -0.00505 0.00178 8.0038 0.0047

Shoulder -0.5613 0.0900 38.9195 <.0001

AUC 0.7095

Volume (veh/h)
Speed Limit 

(mph)

Conflict number

Lane-change Rear-end Total

4000
50 25 3 28

70 134 48 182

8000
50 104 56 160

70 292 271 563

12000
50 198 131 329

70 309 270 579
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Overview

Early warning systems along roadways are an excellent method of

dealing with hazardous conditions along roadways. However,

research into different designs is quite limited in terms of their

effectiveness. This study presents an experimental analysis of a

dynamic message sign (DMS) and beacons’ effect on a drivers

behavior when dealing with a reduced visibility scenario due to fog.

The experimental design of this study follows six variables of interest

to generate multiple scenarios using NADS-MiniSim Driving

Simulator. Through this simulator, driver speed, braking, steering, and

vehicle following behavior can be observed and analyzed while only

test variables are present and constant. These variables, once

collected, are then analyzed via ANOVA, regression, and crosstabs to

observe significance on the driver as well as each other.

Data Description and Preparation

All data of interest for this research are collected via the simulation

tests as well as demographic data collected from the participants

themselves. This demographic data of interest includes the drivers:

Gender/Age, Experience, Driving Frequency, Crash History, and so

on. Each participants driving behavior will be observed on: Overall

Speed, Breaking, Acceleration/Decleration, Vehicle Following

Distance, and Sign/Vehicle Recognition. The variables that these

drivers will encounter are what make up the experimental design of

this study and are as follows:

1) Roadway Type (Freeway / Arterial)

2) Visibility Distance (500ft / 300ft / 150ft)

3) Number of DMS Present (0 / 1 / 2)

4) DMS Message (Null / Warning / Advised)

5) Traffic Setting (Heavy / Light)

6) Beacon Presence (0 / 1)

The first variable represents the location of the scenario; a 3-lane

70MPH freeway and a 2-lane 65MPH arterial. The visibility distance

represents the thickness of the fog. The chosen values for the fog are

studied at extreme conditions as it shows more potential to observe a

change in driving behavior. Each roadway has options for up to two

DMS present along the roadway. Studying different instances of the

DMS presence could produce findings. The message of the DMS is

set to display either a ‘warning’ of fog presents, or a ‘advisement’

informing the driver of fog ahead and to reduce speed. The traffic

setting and beacon presence are to test the effects under different

traffic volumes and beacon usage.

Experimental Design
A balanced block factorial design is chosen to break the variable of 

interest into scenarios to be tested. To simplify, restrictions are 

established to eliminate unusable scenarios; further, 12 random 

scenarios are chosen for each roadway type.  Using these 24 

scenarios the block design is established.

• Testing order is broken into 9 blocks with 8 groups.

• Each ‘scenario’ pair will be encountered 3 times.

• Total of 72 participants needed to complete test scheme.

• Age distribution of participants based on FDOT and local crash data.

Balanced Block Design

In order to validate the simulation data, weather and traffic data from

the real world location is used for comparison.

Abdel-Aty, M., Oloufa, A., Peng, Y., et al. “Real Time Monitoring and Prediction of 

Reduced Visibility Events on Florida’s Highways.” (2014)

Scenario Structure
The scenario itself is based on I-75 and SR441 located in Polk county

near Gainesville Florida. Back in 2012, a smog incident occurred

leading to a major vehicle pileup leading to several fatalities and

injuries. This has led to the desire of an early warning system to alter

drivers of upcoming hazards.

The design of the scenario follows:

1) Clear Zone; allows drivers to adjust to the scenario and allow the 

study of initial driver behavior.

2) Variable Zone; DMS and beacons are present and driver reaction 

is observed.

3) Transition Zone; approximately 0.75mi to the study zone, the 

visibility distance decreases to desired level.

4) Fog Zone; allows for observation of driver behavior to the reduced 

visibility fog condition

Plaines Prairie Incident and MiniSim Device

Summary and Future Analysis
Ultimately it is expected that driver behavior compared between the 

clear and foggy segments of roadway will show different trends based 

on the presence of DMS, beacons, the message provided, and the 

traffic setting present.

Future studies are also possible, where additional testing can be done  

in terms of the DMS message and how it is presented. Additionally, 

once more sensors become available along the real-world study 

location, further validation can be performed with the simulation 

findings. No matter the case, the goal of the study is to find an 

effective early warning system to protect drivers from hazardous 

weather conditions.

SR441 Scenario Plan

I-75 Scenario Plan

Block V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24

1 23 4 1 18 10 13 11 20 24 16 17 6 8 7 12 19 21 3 15 9 14 2 5 22

2 11 24 9 1 8 19 23 13 5 7 21 12 20 17 16 18 3 10 4 22 2 6 14 15

3 21 5 23 7 12 3 16 20 8 6 24 2 19 9 13 22 10 18 11 4 15 17 1 14

4 4 10 1 17 13 6 18 12 5 24 15 2 20 8 23 14 22 11 7 16 21 19 9 3

5 7 8 1 5 2 13 15 9 12 6 24 19 10 3 11 16 18 20 14 21 22 17 4 23

6 12 14 23 2 24 5 8 4 16 6 20 21 19 7 10 9 3 18 22 1 11 17 13 15

7 2 16 9 6 23 4 18 24 3 17 20 1 19 11 7 10 12 13 22 14 15 5 8 21

8 11 10 9 19 5 24 3 20 6 16 1 18 14 21 4 13 22 17 12 15 2 7 23 8

9 16 18 23 6 20 5 7 13 22 1 14 21 3 2 4 10 15 24 12 8 9 17 11 19
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Overview
Compared to micro scale safety studies, macroscopic-

focused research is more efficient at integrating zone-

level features into crash prediction models and

identifying hot zones in large study areas. However,

few studies have focused on the limitations of current

hotspot/hot-zone identification methods (HSID) applied

at the macro level. This study applied six common

HSID methods and compared their consistency in

identifying hot-zones. The crash data was based on

five years of crash records from Central Florida

(Orange, Seminole, and Osceola Counties). The

results showed that the hot-zones identified by the

crash frequency, Empirical Bayes, and Potential for

Safety Improvement methods all had high consistency

and stability over time, followed by the crash rate and

Equivalent Property Damage Only methods. The

Proportion method had the lowest consistency. Other

possible factors related to the methods’ performance

were also examined, which included the time length of

the before period, the time length of the after period,

the time gap, hot-zone threshold (α), and different

crash types. However, these factors affected the

performance of the methods only slightly. Also, the

main problem of the crash frequency method,

regression- to-the-mean, was not found to affect the

performance of the method at the macro level because

the consistency stayed high even in cases where the

time length of the before period was as low as one

year.

Study Objectives
1. This paper compared the performance of six common

HSID methods by the site consistency test at the

macro level.

2. The limitations of current HSID methods were

examined at the macro level.

Study Data
• Study Area: Orange, Seminole, & Osceola Counties

• Target: Crashes (2005-2010)

• Independent variables: Roadway/traffic, and socio-

economic data

Hotspot Identification Methods
Hot-zones are the areas having high crash risk over

the defined threshold.

1. Crash frequency: Each study unit (e.g., TSAZ in this

study) is ranked by its total crash frequency.

2. Crash Rate: the total crash frequency divided by the

overall exposure, such as VMT for each TSAZ.

3. Equivalent Property Damage Only Crash

Frequency: Different weights were developed to

combine frequency and severity based on the

approach of willing to pay (Fatal: injury: PDO =

771:35:1).

4. Proportion method: Define parameters regarding

one target crash type, and then an estimate of the

probability of this specific crash type occurring

among all crashes.

5. Empirical Bayesian method (EB): a weighted

combination of the predictions obtained from an SPF

and the observed crash frequency

6. Potential for Safety Improvement (PSI): the

difference between the expected crash count and

the predicted crash count

Performance Evaluation Criteria
Site consistency test (SCT): a high-risk hot-zone

repeated during a study period

Results
Six scenarios were used to examine possible factors

related to method consistency.

Scenario 1: Different HSID Methods

Overall, crash frequency, EB, and PSI method all have

high consistency, followed by the crash rate and EPDO

method. The proportion method has the lowest

consistency.

Scenario 2: The Length of the Before Period

When the length of before period increases, the

consistency of EPDO method increased while that of

the crash rate method decreased. Other results are

similar.

Scenario 3: The Length of the After Period

No significant trend change when the length of the after

period is extended.

Scenario 4: Time Gap

The use of historical crash data to identify hot-zones 

does not change the consistency of the method in use. 

Scenario 5: Hotspot Threshold 

No clear trend of the consistency when the hotspot 

threshold changes (reduced from 95 % to 90%).

Scenario 6: Different Crash Types( FI, Pedestrian 

crashes) 

For fatal and injury crashes, the crash frequency and 

PSI method still showed high consistency, although at 

slightly lower values than for total crash data (90 % → 

80 %). For pedestrian crashes, the crash frequency 

and EB methods showed high consistency, with only 

slightly lower values than for total crash data (90 % → 

70 %).

Discussion and Conclusions
1. Consistency: the crash frequency, Empirical Bayesian,

and PSI> EPDO> Proportion Method.

2. Other possible factors related to the methods’

performance were also examined, and these factors

affected the performance of the methods only slightly.

3. Also, regression-to-the-mean, was not found to affect

the performance of the method at the macro level.
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Overview
This study aims at identifying two zonal levels factors.

The first is to identify hot zones at which pedestrian

crashes occurs, while the second are zones where

crash-involved pedestrians came from. Bayesian

Poisson Lognormal Simultaneous Equation Spatial

Error Model (BPLSESEM) was estimated and

revealed significant factors for the two target variables.

Then, PSIs (Potential for Safety Improvements) were

computed using the model. Subsequently, a novel hot

zone identification method was suggested to combine

both hot zones from where vulnerable pedestrians

originated with hot zones where many pedestrian

crashes occur. For the former zones, targeted safety

education and awareness campaigns can be provided

as countermeasures whereas area-wide engineering

treatments and enforcement may be effective safety

treatments for the latter ones. Thus, it is expected that

practitioners are able to suggest appropriate safety

treatments for pedestrian crashes using the method

and results from this study.

Data Preparation
Data from 983 ZIP areas in Florida were used for the

analysis. Pedestrian crashes occurring between 2009

and 2011 were collected from Florida Department of

Transportation (FDOT). Demographic, commute

pattern, and socio-economic data were obtained from

the U.S. Census Bureau and the roadway/traffic data

were acquired from FDOT Roadway Characteristics

Inventory. Lastly, the facility/attraction data were

obtained from FDOT Unified Basemap Repository.

Overall 40 candidate explanatory variables and 2

target variables were processed.

Statistical Modeling
Bayesian Poisson Lognormal Simultaneous Equations

Spatial Error Model (BPLSESEM) was adopted in this

study.

Equation (1):

𝜆𝑖1 = 𝑒𝑥𝑝 𝛽1𝑋𝑖1 + 𝛿1𝑢𝑖1 + 𝜑𝑖

Equation (2):

𝜆𝑖2 = 𝑒𝑥𝑝(𝛽2𝑋𝑖2 + 𝛿2𝑢𝑖1 + 𝛿3𝑢𝑖2 + 𝜑𝑖)

where, 𝜆𝑖𝑘 is the expected number of pedestrian

crashes per crash location ZIP i (k=1) or the expected

number of crash-involved crashes per residence ZIP i

(k=2), 𝑋𝑖𝑘 is a row vector of explanatory variables

showing characteristics of ZIP i, for target 𝑘, 𝛽𝑘 is a

coefficient estimate of model covariates 𝑋𝑖𝑘 , 𝜃𝑖𝑘 is a

random error term representing normal heterogeneity

of ZIP i, for target k, 𝑢𝑖𝑘 follows normal distribution (0,

𝜏𝜃) for ZIP i and target 𝑘, 𝜏𝜃 is the precision parameter

that is the inverse of the variance; it follows prior

gamma (0.5, 0.005), 𝛿1 is the coefficient for 𝑢𝑖1 in

Equation (1), while 𝛿2 and 𝛿3 are the coefficients for

𝑢𝑖1 and 𝑢𝑖2 in Equation (2), respectively, and 𝜑𝑖 is a

shared spatial autocorrelation error term (CAR).

Zonal-level Screening
In this study PSI (Potential for Safety Improvement)

was selected as the performance measure. PSI, or

excess crash frequency, shows whether a zone is

experiencing more or less number of crashes

compared to other zones with similar characteristics.

PSI is calculated by the difference between the

expected and predicted number of crashes.

In the preceding section, hot zones for two targets:

‘Pedestrian crashes per crash location ZIP’ and

‘Crash-involved pedestrians per residence ZIP’ are

identified individually. In this section, the hot zone

identification results of the two targets are combined to

provide a broad spectrum perspective for both

locations with higher risk for pedestrians and

residences with many pedestrians vulnerable to

crashes.

All zones were again categorized according to the two

scopes: location and residence, and 3 traffic safety

levels: ‘H’, ‘W’, and ‘C’. Therefore, there are overall 9

combination classifications: ‘HH’, ‘HW’, ‘HC’, ‘WH’,

‘WW’, ‘WC’, ‘CH’, ‘CW’, and ‘CC’. The initial letter of

the classifications represents the location-based

pedestrian safety risk, and the latter character

symbolizes the residence-based pedestrian safety

risk.

Conclusion
A novel hot zone identification method was suggested

to combine both hot zones with many pedestrian crash

occurrences and hot zones with many crash-involved

pedestrians in the residence. For the former zones,

area-wide engineering treatments and enforcement

can be provided as general countermeasures whereas

targeted safety education and campaigns may be

effective safety treatments for the latter ones.
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Variables

Pedestrian crashes per

crash location ZIP

Crash-involved pedestrians

per residence ZIP

mean s.d.
BCI

mean s.d.
BCI

2.5% 97.5% 2.5% 97.5%

Intercept -2.210 0.254 -2.599 -1.733 -3.902 0.630 -4.860 -2.560

(Log of population) × (Log of VMT) 0.036 0.002 0.032 0.038

Log of population 0.760 0.062 0.634 0.854

Proportion of children (5-14 years) 1.804 0.495 0.982 2.877

Proportion of people working at home -1.930 0.492 -2.940 -1.012

Proportion of households without available vehicle 1.849 0.529 0.719 2.760

Proportion of households below poverty level 2.820 0.192 2.479 3.174

Median household income (in $1,000) -0.013 0.001 -0.016 -0.011

Proportion of high-speed roads (55 mph or higher) -1.161 0.089 -1.329 -0.989 -0.598 0.088 -0.767 -0.441

Number of rail and bus stations per mi2 0.035 0.017 0.001 0.068

Number of hotels, motels, and guest houses per mi2 0.022 0.004 0.013 0.029

Number of marina/ferry terminals per mi2 0.222 0.062 0.093 0.332

Number of K-12 schools per mi2 0.084 0.017 0.047 0.115

𝛿1,  𝛿2 2.018 0.739 1.090 3.764 0.810 0.342 0.354 1.538

𝛿3 -0.645 0.356 -1.540 -0.192

s.d. of 𝜑𝑖 0.544 0.060 0.424 0.664 same
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Background

The advent of Big Data era

• Since 2010

• Key words:

Data Information

Big Predictions

What is Big Data?

• Volume: increasing size of data

• Velocity: unprecedented streaming speed of data

• Variety: wide range of data formats

• Other dimensions of Big Data: Veracity, Variability, Complexity.

Big Data in transportation arena

Data sources

* Intelligent Transportation System (ITS) facilities

• Roadway geometric data

• Crash database

• Socio-demographic database

• Web traffic and social network database

Data types

• Structured data

• Unstructured data

Applications of Big Data in Transportation arena

• Operation efficiency (congestion improvement)

• Traffic safety (crash prevention)

Research Objectives

1) Evaluation of the relationship between traffic operation and safety

2) Improving traffic operation and traffic safety simultaneously

Tools

Three urban expressways;

Real-time ITS traffic data;

Crash report;

Data Preparation
Three expressways in Central Florida area:

• 75 miles in length located in urban area

ITS system:

• Microwave Vehicle Detection System

• Data collection at 1-minute interval from Jul, 2013 to Feb, 2014

from 275 detectors

Crash reports:

• 243 rear-end crashes on the expressways during the time period

• Crash cases vs non-crash control cases: 1:4

Matching ITS and crash data:

• 10-5 minutes prior to each crash case

Methodology 

Operation efficiency (congestion) evaluation:

CI =
free flow speed−actual speed

free flow speed
when CI > 0; (1)

= 0 when CI ≤ 0
Real-time traffic safety (rear-end crashes) evaluation:

• Random forest: importance of crash contributing factors

• Bayesian logit model: effects of crash contributing factors

Simultaneous improvement of traffic operation and safety:

• First Order Reliability Method (FORM) Analysis

Analysis Results

Operation evaluation

• Congestion occurrence: highly localized and time specific

• Urban area: congestion in rush hours

• Congestion intensity: varies on spatial-temporal dimensions

Real-time traffic safety evaluation

Variable selection:

• Peak hour

• Logarithm of volume

• Average speed

• Congestion index

Real-time logit model:

First Order Reliability Method (FORM)

Conclusions:

*twitter

*facebook

*Automatic Vehicle 

Detection System

*Microwave Vehicle 

Detection System

Route
Length 

(mi)
Direction

Mainline 
Detectors

Mean 
Distance

SR 408 21.4
EB 55 0.38

WB 55 0.39

SR 417 31.5
NB 55 0.58

SB 55 0.58

SR 528 22.4
EB 26 0.84

WB 29 0.84

Random Effect Fixed Effect Random Parameter

Mean 95% BCI Mean 95% BCI Mean 95% BCI

Intercept
-- -- -1.505 (-3.487, 0.541) -1.031[1] (-4.176, 2.589)

-3.315[2] (-5.268, -0.092)

peak
1.905 (1.435,2.419) 1.857 (1.373, 2.363) -- --

-- --

log_u2_vol
0.275 (0.116, 0.435) 0.382 (0.171, 0.596) 0.338[1] (0.117, 0.554)

0.823[2] (0.291, 1.374)

u2_avgspd
-0.057 (-0.070, -0.045) -0.042 (-0.066, -0.016) -0.032[1] (-0.059, -0.002)

-0.048[2] (-0.087, -0.017)

d1_ci
6.053 (3.253, 9.546) 6.809 (3.658, 10.920) 7.288[1] (3.428, 12.160)

6.190[2] (6.200, 10.630)

Model Estimation

 D 634.211 632.975 629.562

pD 4.879 5.171 6.652

DIC 639.090 638.146 636.214

Training Data ROC 0.774 0.779 0.781

Validation Data ROC 0.755 0.755 0.755

[1] non-peak hours; [2] peak hours.

Distribution
log_u2_vol u2_avgspd d1_ci

Converged -2 LL Selected Converged -2 LL Selected Converged -2 LL Selected

Normal Yes 496 Yes Yes 1663 No Yes -76 No

Lognormal Yes 1053 No Yes 1757 No Yes -443 No

Exponential Yes 1098 No Yes 2058 No Yes -389 No

Weibull Yes 555 No Yes 1645 Yes Yes -458 Yes

Gamma Yes 769 No Yes 1719 No Yes -452 No

Basic Statistics Pearson Correlations FORM Critical

PointMean Std. Dev log_u2_vol u2_avgspd d1_ci

log_u2_vol 5.007 0.561 1 -0.366 0.259 5.17

u2_avgspd 67.448 4.785 -0.366 1 -0.371 67.0

d1_ci 0.071 0.034 0.259 -0.371 1 0.075

Individual detector Congestion Index (CI)

< 0.2 ≥ 0.2
System Congestion 

Index (CI)

< 0.075 Safe and no congestion congestion warning

≥ 0.075 Prepare for safety warning congestion and safety Warning
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Background

Providing motorists with efficient and safe traffic system has long

been considered a priority of traffic professionals. With the growth in

traffic demand outpacing the construction of road infrastructure,

congestion and safety concerns arise. In urban areas, many traffic

authorities have turned to toll/turnpike facilities and efficient use of

Intelligent Transportation Systems (ITS) techniques as remedies for

congestion and to improve safety.

Challenges in studies on congestion-safety relationship

1) How congestion is measured could affect the conclusion

2) Congestion could be time specific

3) Multicollinearity could alter the estimation of contributing factors

Objective

Identifying the relationship between congestion and crashes on urban

expressways

Data Preparation
Urban expressway:

• State Road (SR) 408, Orlando

• Length: 21.4 miles

ITS Traffic Detection systems:

• Automatic Vehicle Identification (AVI) System

• Microwave Vehicle Detection System (MVDS)

Traffic flow data from AVI and MVDS systems

Development of congestion measures

• AVI -- Travel time based:

TTI =
actual travel time

free flow travel time

• MVDS -- Travel speed based:

CI =
free flow speed−actual speed

free flow speed
if CI > 0; CI = 0 if CI ≤ 0

• MVDS -- Density based:

Lane occupancy: percent of time a point on the road is 

occupied by vehicles

Roadway geometric characteristics data

• Geometric elements: number of lanes, existence of auxiliary lanes,

horizontal degree of curvature, speed limit, etc.

• Homogeneous segments: 75 segments on Eastbound (EB) and 76

segments on Westbound (WB)

Crash data

Selection of crash data for congestion-safety analysis

1) Data should reflect traffic conditions for the days when recurrent

congestion occurs

2) Crashes should be more likely to be influenced by traffic flow

• 06:00 to 21:00 on weekdays, Sep. 2012 – Dec. 2013

• 472 crashes

Methodology
• Diagnostics of multicollinearity

• Correlation test: Pearson’s correlation test

• Coefficients of determination: 𝑅2 =
  𝑦𝑖− 𝑦 2

 𝑦𝑖− 𝑦 2

• Tolerance (TOL): 𝑇𝑂𝐿𝑘 = 1 − 𝑅𝑘
2

• Variance Inflation Factor (VIF): 𝑉𝐼𝐹𝑘 =
1

𝑇𝑂𝐿𝑘

• Bayesian ridge regression

• Crash frequency model

𝑌𝑖𝑗𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗𝑡)

• Hierarchical data structure and random effects

𝑙𝑜𝑔 𝜆𝑖𝑗𝑡 = 𝑎𝑗𝑡 𝑖 + 𝐗𝐢𝛃 + 𝛿1𝜖𝑖𝑡 + 𝛿2𝜖𝑖
𝑎𝑗𝑡 = 𝐔𝐣𝐭𝛄𝐭

• Ridge regression

𝑧𝑗𝑡 =
𝑢𝑗𝑡 −  𝑢𝑗𝑡

sd(𝑢𝑗𝑡)

𝛾𝑡 =
𝑏𝑡

sd(𝑢𝑗𝑡)

𝑎𝑗𝑡 = 𝐙𝐣𝐭𝐛𝐭

Results and Discussion
Presence of multicollinearity:

𝑉𝐼𝐹𝑠 < 10
𝑅𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦

2 > 𝑅𝑔𝑒𝑛𝑒𝑟𝑎𝑙
2

Response: Multicollinearity should be taken into account

Time-specific nature of congestion on crash frequency

Comparison of congestion measures

Conclusions
• The impact of congestion on traffic safety is significant during peak 

hours

• Different congestion measures might alter its impact on safety

• Considering multicollinearity helps clarify the congestion-safety 

relationship

Peak Hours
Correlation between variables Coefficient of 

Determination
TOL VIF

MVDS volume Speed CI

MVDS volume 1.000 -0.315 0.468 0.744 0.256 3.906

Speed -0.315 1.000 -0.669 0.826 0.174 5.736

CI 0.468 -0.669 1.000 0.847 0.153 6.544

VIF mean 1.845

𝑅2 general 0.458

Non-peak 

Hours

Correlation between variables Coefficient of 

Determination
TOL VIF

MVDS volume Speed CI

MVDS volume 1.000 -0.172 0.009 0.693 0.307 3.253

Speed -0.172 1.000 -0.404 0.743 0.257 3.887

CI 0.009 -0.404 1.000 0.738 0.262 3.819

VIF mean 1.620

𝑅2 general 0.383

Variables
(1) Uncorrelated random effects

(2) Random parameter with 

uncorrelated random effects

(3) Random parameter with 

correlated random effects

Mean SD 95% BCI Mean SD 95% BCI Mean SD 95% BCI

RCI level

Intercept 0.873 0.196 (0.466, 1.250) 0.970 0.187 (0.601, 1.344) 0.947 0.241 (0.487, 1.406)

log(Length) 0.769 0.137 (0.495, 0.1.042) 0.801 0.134 (0.541, 1.082) 0.821 0.179 (0.490, 1.180)

Auxiliary 

lane
0.268 0.168 (-0.061, 0.595) 0.211 0.167 (-0.120, 0.535) 0.343 0.194 (-0.012,0.749)*

MVDS level

log(MVDS 

volume)
0.646 0.151 (0.349, 0.948)

0.580[1] 0.352 (-0.074,1.269) 0.482[1] 0.313 (-0.097,1.120)

0.149[2] 0.037 (0.077,0.225) 0.128[2] 0.028 (0.078,0.183)

CI 0.162 0.026 (0.112, 0.215)
0.791[1] 0.312 (0.151, 1.384) 0.671[1] 0.278 (0.129,1.211)

0.209[2] 0.145 (-0.067,0.478) 0.092[2] 0.127 (-0.138,0.336)

Model performance
 𝐷 755.196 763.963 749.718

𝑝𝐷 124.000 113.099 90.698

DIC 879.195 877.062 840.416

*significant at 90% BCI

[1] peak hours; [2] non-peak hours

Congestion 

Measures
Occupancy Congestion Index (%) Travel Time Index

Variables Mean SD 95% BCI Mean SD 95% BCI Mean SD 95% BCI

RCI level

Intercept 0.964 0.256 (0.479, 1.472) 0.947 0.241 (0.487, 1.406) 0.993 0.204 (0.580, 1.372)

log(Length) 0.842 0.180 (0.483, 1.192) 0.821 0.179 (0.490, 1.180) 0.852 0.146 (0.563, 1.143)

Auxiliary lane 0.411 0.233 (-0.059, 0.786)* 0.343 0.194 (-0.012,0.749)* 0.303 0.175 (-0.012, 0.656)*

AVI/MVDS level

log(MVDS volume)
0.572[1] 0.342 (-0.045, 1.228) 0.482[1] 0.313 (-0.097,1.120) -- -- --

0.157[2] 0.045 (0.067, 0.245)* 0.128[2] 0.028 (0.078,0.183) -- -- --

log(AVI volume)
-- -- -- -- -- -- 1.015[1] 0.522 (0.025, 1.987)

-- -- -- -- -- -- 0.869[2] 1.350 (-1.742, 3.602)

Occupancy
0.572[1] 0.334 (0.024, 1.216) -- -- -- -- -- --

-0.031[2] 0.081 (-0.146, 0.187) -- -- -- -- -- --

CI
-- -- -- 0.671[1] 0.278 (0.129,1.211) -- -- --

-- -- -- 0.092[2] 0.127 (-0.138,0.336) -- -- --

TTI
-- -- -- -- -- -- 0.634[1] 0.355 (0.026, 1.352)

-- -- -- -- -- -- -1.232[2] 1.295 (-3.818, 1.216)

Model performance
 𝐷 751.326 749.718 754.224

𝑝𝐷 94.147 90.698 93.212

DIC 845.473 840.416 847.436

*significant at 90% BCI

[1]peak hours; [2]non-peak hours


